Yee’s Scheme for the Integration of Maxwell’s Equation on Unstructured Meshes
نویسندگان
چکیده
The co-volume integration method, Yee’s scheme, generalized to unstructured mesh is considered and compared with time domain finite element method (TDFE). In order to generate the meshes for which a good quality dual mesh is ensured, a new point placing method for the generation of meshes appropriate for the use of the co-volume method is proposed. Numerical examples are presented which demonstrate the consistency and performance of the co-volume method.
منابع مشابه
Smooth Delaunay-Voronoï Dual Meshes for Co-Volume Integration Schemes
Yee’s scheme for the solution of the Maxwell equations [1] and the MAC algorithm for the solution of the Navier–Stokes equations [2] are examples of co-volume solution techniques. Co-volume methods, which are staggered in both time and space, exhibit a high degree of computationally efficiency, in terms of both CPU and memory requirements compared to, for example, a finite element time domain m...
متن کاملGeometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms
In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwell’s equations that automatically preserve key symmetries and invariants. In doing so, we demonstrate ...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملDesign of asymptotic preserving schemes for the hyperbolic heat equation on unstructured meshes
The transport equation, in highly scattering regimes, has a limit in which the dominant behavior is given by the solution of a di usion equation. Angular discretization like the discrete ordinate method (SN ), the truncated spherical harmonic expansion (PN ) or also nonlinear moment models have the same property. For such systems it would be interesting to construct nite volume schemes on unstr...
متن کامل